Inhibition of growth hormone receptor gene expression by saturated fatty acids: role of Kruppel-like zinc finger factor, ZBP-89.
نویسندگان
چکیده
The expression and function of the GH receptor is critical for the actions of pituitary GH in the intact animal. The role of systemic factors in the reduced expression of the GH receptor and consequent GH insensitivity in pathological states such as sepsis, malnutrition, and poorly controlled diabetes mellitus is unclear. In the current study, we demonstrate that saturated (palmitic and myristic; 50 microM) fatty acids (FA) inhibit activity of the promoter of the major (L2) transcript of the GH receptor gene; unsaturated (oleic and linoleic) FA (200 microM) do not alter activity of the promoter. Comparable effects with palmitic acid and the nonmetabolizable analog bromo-palmitic acid, and failure of triacsin C to abrogate palmitic acids effects on GH receptor expression indicate that this effect is due to direct action(s) of FA. Palmitic acid, but not the unsaturated FA linoleic acid, decreased steady-state levels of endogenous L2 mRNA and GHR protein in 3T3-L1 preadipocytes. The effect of FA was localized to two cis elements located approximately 600 bp apart on the L2 promoter. EMSA and chromatin immunoprecipitation assays established that both these cis elements bind the Krüppel-type zinc finger transcription factor, ZBP-89. Ectopic expression of ZBP-89 amplified the inhibitory effect of FA on L2 promoter activity and on steady-state levels of endogenous L2 mRNA in 3T3-L1 preadipocytes. Mutational analyses of the two ZBP-89 binding sites revealed that both the sites are essential for palmitic acid's inhibitory effect on the L2 promoter and for the enhancing effect of ZBP-89 on palmitic acid-induced inhibition of the L2 promoter. Our results establish a molecular basis for FA-induced inhibition of GH receptor gene expression in the pathogenesis of acquired GH insensitivity in pathological states such as poorly controlled diabetes mellitus and small for gestational age.
منابع مشابه
ZBP-89 function in colonic stem cells and during butyrate-induced senescence
ZBP-89 (Zfp148, ZNF148) is a Kruppel-type zinc-finger family transcription factor that binds to GC-rich DNA elements. Earlier studies in cell lines demonstrated that ZBP-89 cooperates with Wnt β-catenin signaling by inducing β-catenin gene expression. Since β-catenin levels are normally highest at the crypt base, we examined whether ZBP-89 is required for stem cell maintenance. Lineage-tracing ...
متن کاملExpression of transcription factor zinc-binding protein-89 (ZBP-89) is inhibited by inflammatory cytokines.
Zinc-binding protein-89 (ZBP-89; ZNF148, BERF-1, BFCOL-1) is a zinc-finger transcription factor of the Kruppel family. It has been shown to regulate the expression of a number of genes, acting as either an activator or repressor of gene expression, depending on the context. It is over-expressed in several cancers, but has been shown to be involved in apoptosis and to have a negative influence o...
متن کاملIntestinal alkaline phosphatase gene expression is activated by ZBP-89.
Intestinal alkaline phosphatase (IAP) is an enterocyte differentiation marker that functions to limit fat absorption. Zinc finger binding protein-89 (ZBP-89) is a Kruppel-type transcription factor that appears to promote a differentiated phenotype in the intestinal epithelium. The purpose of this study was to investigate the regulation of IAP gene expression by ZBP-89. RT-PCR, quantitative real...
متن کاملAn isoform of ZBP-89 predisposes the colon to colitis
Alternative splicing enables expression of functionally diverse protein isoforms. The structural and functional complexity of zinc-finger transcription factor ZBP-89 suggests that it may be among the class of alternatively spliced genes. We identified a human ZBP-89 splice isoform (ZBP-89(DeltaN)), which lacks amino terminal residues 1-127 of the full-length protein (ZBP-89(FL)). ZBP-89(DeltaN)...
متن کاملZBP-89 promotes growth arrest through stabilization of p53.
Transcription factor p53 can induce growth arrest and/or apoptosis in cells through activation or repression of downstream target genes. Recently, we reported that ZBP-89 cooperates with histone acetyltransferase coactivator p300 in the regulation of p21(waf1), a cyclin-dependent kinase inhibitor whose associated gene is a target gene of p53. Therefore, we examined whether ZBP-89 might also inh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular endocrinology
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2006